Mark schemes

1. (a) Move the wooden block to the left.
(b) use a pulley (on the edge of the bench)

> allow any feasible method to stop the string from rubbing
(c) suitable scale
points plotted correctly
allow 5 correctly plotted for $\mathbf{2}$ marks OR 3-4 correctly plotted for 1 mark
line of best fit
(d) (directly) proportional allow a correct description of direct proportionality ignore positive correlation allow weight (added to mass holder) for force allow $f=$ ma for $\mathbf{1}$ mark
(e) repeat the measurements/investigation
ignore anomalies and calculate the mean / average
(f) resultant force $=$ mass \times acceleration
or
$\mathrm{F}=\mathrm{m} \mathrm{a}$
(g) $0.375=0.60 \times \mathrm{a}$
$a=\frac{0.375}{0.60}$
$\mathrm{a}=0.625\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
$a=0.63\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
2. (a) will return to its original shape/length
when the force is removed
allow (when) the child gets off
the second mark is dependent on scoring the first mark
(b) Level 3: The method would lead to the production of a valid outcome. The key steps are identified and logically sequenced.

$$
5-6
$$

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

- \quad set up a clamp stand with a clamp
- hang the spring from the clamp
- use a second clamp and boss to fix a (half) metre rule alongside the spring
- record the ruler reading that is level with the bottom of the spring
- hang a $1 \mathrm{~N} /$ a known weight from the bottom of the spring
- record the new position of the bottom of the spring
- calculate the extension of the spring
- measure the extension of the spring
- add further weights to the spring so the force increases 1 N at a time up to 5 N
- for each new force record the position of the bottom of the spring and calculate / measure the extension

Risk Assessment

Hazard: Clamp (stand, boss and masses) might fall off desk
Risk: injury to feet
Precaution: Use clamp to fix apparatus to the bench or
Ensure that the slotted masses hang over the base/foot of the stand or
Ensure that the boss is screwed tightly into the stand and clamp or
Put (heavy) masses on the base/foot of the stand or Stand up so that you can move out of the way

Hazard: Spring could break / come loose
Risk: damage eye
Precaution: Wear safety goggles
If a risk assessment / hazard is not given, the answer can still reach level 3, but not full marks.

Full marks may be awarded for alternative feasible methods.
(c) force $=$ spring constant \times extension
(d) 5.000 .125 allow any correct pair of values from the graph
$k=\underline{5.00}$
0.125
allow a misread value(s) from the graph
$k=40(\mathrm{~N} / \mathrm{m})$
allow a correct calculation using their incorrect value(s)
(e) the line is straight
allow the line does not curve
allow a constant gradient
1
and passes through the origin
1
(f) $e=0.20 \mathrm{~m}$
$E_{e}=0.5 \times 13 \times 0.20^{2}$ allow an incorrectly / not converted value of e

1
$E_{e}=0.26(\mathrm{~J})$
use of two incorrectly/not converted values scores a maximum of 1 mark
3. (a) Level 2: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

No relevant content

Indicative content

Factors

- poor condition of tyres
- poor road surface
- wet or icy road
- poor/worn brakes

Explanation

- because of decreased friction

Factors

- increased mass of car/passengers

Explanation

- increases kinetic energy of car
- more work needs to be done to stop car
- increases momentum of the car

Factor

- road slopes downhill

Explanation

- (a component of) gravity opposes the braking force
- resultant (braking) force is reduced
allow answers in terms of reducing braking distance throughout
A single factor with no related explanation is insufficient to score a mark
(b) resultant force $=$ mass \times acceleration
(c) $7200=1600 \times a$ ignore negatives throughout

$$
a=\underline{7200}
$$

1600

$$
a=4.5\left(\mathrm{~m} / \mathrm{s}^{2}\right)
$$

(d) $15(\mathrm{~m}) 38(\mathrm{~m})$
two correct values identified
$=53(\mathrm{~m})$
allow the correct addition of a misread braking distance and /or a misread thinking distance taken from the graph
(e) $p=\frac{F}{A}$
(f) $120000=\frac{60}{A}$

$$
A=\frac{60}{120000}
$$

$A=0.0005$
$A=5(.0) \times 10^{-4}$ allow an answer given to 2 sig figs from an incorrect calculation using the given data
m^{2}
1
[16]
4. (a) friction
(b) air resistance
(c) $\mathrm{A}=\mathrm{B}$
(d) $M=150 \times 0.24$
$M=36(\mathrm{Nm})$
(e) chain
(f) $5.8 \mathrm{~m} / \mathrm{s}$
(g) $a=\frac{5.8}{20}$
allow their v from part (f)
$a=0.29\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
allow a correctly calculated value using their v from part (f)
(h) Deceleration
(i) straight arrow drawn between home and school pointing towards school.
5. (a) $30\left({ }^{\circ}\right)$
(b) zero error

1
(c) subtract 0.5 N from each measurement
(d) points plotted correctly

$$
\begin{aligned}
& \text { allow } 5 \text { correctly plotted for } 2 \text { marks, 2-4 correctly } \\
& \text { plotted for } 1 \text { mark } \\
& \text { allow } \pm \text { half a square } \\
& \text { ignore any attempt at a line of best fit }
\end{aligned}
$$

(e) the long ramp has a smaller angle allow description (eg shallower gradient / less steep)
(so) less force is needed (to hold the wheelchair stationary on the ramp) allow (so) less force is needed to move the wheelchair up the ramp
(f) $\quad W=160 \times 2.5$

$$
W=400(\mathrm{~J})
$$

6. (a) B to D
(b) metre rule
allow tape measure
allow ruler
(c) so that each piece falls the same distance allow to stop them from building up at the bottom
(d)
$\underline{34+37+34}$
3

$$
\text { allow } \frac{105}{3}
$$

35 (s)
(e) cone
the (mean) time is the lowest reason only scores if correct shape is selected allow it fell the fastest
allow it had the most streamlined shape
ignore reference to surface area

1
(f) Time through air would be less.
(g) $w=0.050 \times 9.8$
$\mathrm{w}=0.49(\mathrm{~N})$
1

1

1
(h) Electrostatic force

Magnetic force
7. (a) velocity includes direction allow velocity is a vector (quantity) and speed is a scalar (quantity)
(b) (an equal) force from the air pushes on the engine/aircraft
in the opposite direction
only scores if first marking point scored
accept to the left or forwards
if no other marks scored, allow 1 mark for pushes the engine forwards
(c) correct value for distance and corresponding time
(e.g. 12000 m and 50 s)

$$
\begin{aligned}
& \mathrm{v}=\frac{\text { their change in distance }}{\text { their change in time }} \\
& \text { this mark may be awarded if distance and/or time are incorrectly read } \\
& \text { from the graph }
\end{aligned}
$$

```
speed = 240(m/s)
```

allow a correctly calculated answer using their values of distance and time from the graph
(d) acceleration $=\frac{\text { change in velocity }}{\text { time taken }}$
or
$a=\frac{\Delta v}{t}$
(e) $250-68=182$
$0.14=\frac{182}{t}$
this mark may be awarded if the change in velocity is incorrectly/not calculated
$t=\frac{182}{0.14}$
this mark may be awarded if the change in velocity is incorrectly/not calculated
$t=1300$ (seconds)
allow a correctly calculated answer using a change in velocity incorrectly/not calculated
(f) work done $=$ force \times distance
or
$\mathrm{W}=\mathrm{Fs}$
(g) $140000000=$ force $\times 2000$
force $=\frac{140000000}{2000}$
force $=70000$ (newtons)
8. (a) equal to allow the symbol = allow a correct answer indicated in the box provided the answer space is blank
(b) J -------- increasing speed

K--------- constant speed
L --------- decreasing speed all three lines correct
allow 1 mark for 1 line correct
more than three lines are drawn scores 0
not moving

(c) $25(\mathrm{~m})$
(d)
av speed $=\frac{100}{12.5}$
an answer of 8(.0) (m/s) scores 2 marks
av speed $=8(.0)(\mathrm{m} / \mathrm{s})$

OR
av speed $=\frac{100}{12.6}$
av speed $=7.93 \ldots(\mathrm{~m} / \mathrm{s})$
allow 7.9 or 7.94
(e) 3.0
9. (a) B
(b) horizontal line drawn from $(40,20)$ to $(300,20)$
straight line drawn from the point where line B finishes to $0 \mathrm{~m} / \mathrm{s}$
finishing on the x-axis at 360 s
(c)

$$
\begin{gathered}
\text { acceleration }=\frac{(\text { change in)velocity }}{\text { time }(\text { taken })} \\
\text { allow } \mathrm{a}=\frac{(\Delta) \mathrm{v}}{\mathrm{t}}
\end{gathered}
$$

(d)

$$
1.15=\frac{\Delta v}{22}
$$

an answer 25.3 scores $\mathbf{3}$ marks

$$
\Delta v=1.15 \times 22
$$

$$
\Delta v=25.3(\mathrm{~m} / \mathrm{s})
$$

10. (a) crate
(b) centre of mass
(c) the pointer is vertical
allow unable to see the pointer allow the bar is horizontal
(d) P
(e) moment (of a force) $=$ force \times distance allow $M=F d$
(f)

$$
\begin{aligned}
& \quad \text { an answer } 2.5(\mathrm{~N}) \text { scores } 3 \text { marks } \\
& 0.15=\mathrm{W} \times 0.06 \\
& \mathrm{~W}=\frac{0.15}{0.06} \\
& \mathrm{~W}=2.5(\mathrm{~N})
\end{aligned}
$$

(g) weight $=$ mass \times gravitational field strength allow $W=m g$
(h)

$$
\begin{aligned}
& 2.5=\mathrm{m} \times 9.8 \\
& \quad \text { allow ecf from part (f) }
\end{aligned}
$$

$$
\mathrm{m}=2.5 / 9.8
$$

mass rice $=0.215(\mathrm{~kg})$ an answer of 0.255 or $0.26(\mathrm{~kg})$ scores 2 marks
11. (a) Level 3: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.

Level 2: Relevant points (reasons / causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

No relevant content

Indicative content

- reaction time
explained in terms of longer reaction times increase thinking distance (from a given speed)
- taking drugs
- drinking alcohol
- tiredness
- age
- distractions
explained in terms of effect on driver's reaction time
- speed
explained in terms of the faster the vehicle the greater the distance travelled in the driver's reaction time (or converse)
OR
explained in terms of increased speed increases KE so increases work done to stop the vehicle
- condition of the tyres
- condition of road surface
- wet/icy roads
explained in terms of condition of tyres and road surface (including weather considerations) affecting friction (between tyres and road)
- condition of brakes
explained in terms of effect on braking force (applied to the wheels) or reduced friction
- mass / weight of vehicle
explained in terms of deceleration force or kinetic energy or change in momentum
answers do not need to reference thinking / braking distance
a Level 1 answer would list factors only or one factor with one linked explanation a Level 2 answer lists at least three factors with one linked explanation or two factors with two linked but different explanations
a Level 3 answer lists at least three factors with at least two linked but different explanations
(b) work (done) $=$ force \times distance

$$
\text { allow } W=F s
$$

(c)
an answer 15 (m) scores 3 marks
$900000=60000 \times$ distance
distance $=\frac{900000}{60000}$
distance $=15(\mathrm{~m})$
(d) brakes overheating allow brake fade
or
brakes locking
allow wheels locking
(causing) loss of control
or
(causing) a skid allow increasing the stopping / braking distance ONLY if the first marking point scored ignore any effects on passengers or possible accidents
weight $=24.5(\mathrm{~N})$
an answer of 24.5 rounded to 25 scores 2 marks an answer of 24.5 scores 2 marks
(c) the upthrust is the same as the weight
(d) (resultant) force $=$ mass \times acceleration

$$
\text { allow } F=m a
$$

(e) $4.0=2.5 \times \mathrm{a}$
$a=\frac{4.0}{2.5}$
$a=1.6\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
13. (a) work done $=11500 \times 2.60$
work done = $29900(\mathrm{~J})$
1
(b) 13800
(c) moment (of a force) $=$ force \times distance allow $M=F d$
(d) $13800=11500 \times$ distance
distance $=\frac{13800}{11500}$
of an answer 1.2(0) scores 3 marks
14. (a) $p=\frac{27}{0.009}$
$p=3000$

Pa
(b)

the water path hits the surface somewhere between the other two paths
(c) pressure increases with depth
allow when the pressure is higher, the water travels further
(d) pressure acts in all directions
or
pressure causes a force on (all) the surfaces
ignore liquids cannot be compressed
15. (a) Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

set up a clamp stand with a clamp
hang the spring from the clamp
use a second clamp and boss to fix a (half) metre ruler alongside the spring
record the metre ruler reading that is level with the bottom of the spring
hang a 2 N weight from the bottom of the spring
record the new position of the bottom of the spring
calculate the extension of the spring
measure the extension of the spring
add further weights to the spring so the force increases 2 N at a time up to 10 N
for each new force record the position of the bottom of the spring and calculate / measure the extension

possible source of inaccuracy

not fixing the ruler in position but simply holding the ruler next to the spring
not clamping the ruler vertical
misjudging the position of the bottom of the spring
parallax error
allow any other sensible suggestion that could reasonably lead to inaccuracy in the data
allow a description that would increase accuracy
repeating the measurements is insufficient
(b) to identify any anomalous results
allow calculate an average for the spring constant
or
to reduce the effect of random error
allow (more) accurate
to obtain an average is insufficient
to be able to draw a graph is insufficient
(c) both points plotted correctly
correct line of best fit drawn
to pass through $(0,0)$ and $(10,20)$
(d) force $=$ spring constant \times extension

$$
\text { allow } F=k e
$$

(e) extension $=0.2$
allow $0.035 / 0.08 / 0.125 / 0.16$
$10=k \times 0.2$
force value must match extension
this mark may be awarded if e is in cm
$\mathrm{k}=\frac{10}{0.2}$
allow correct transformation of their chosen values this mark may be awarded if e is in cm

$$
k=50
$$

an answer 0.5 scores 3 marks
an answer of 50 scores 4 marks
(f) the line is straight
allow the line does not curve
and passes through the origin
this mark is dependent on scoring the first mark
allow a correct description of direct proportionality for 2
marks
ignore the line shows they are directly proportional
16. (a) from K to L

1

1
(c) 4 N
(d) the limit of proportionality is reached when a weight of 7 N is added to the spring accept any number from 6.8 to 7.2 inclusive
(e) the extension is directly proportional to the weight.
(f) C

1

1
[7]
17.
(b) C
(c) $\mathrm{W}=300 \times 45$
$W=13500$
1

1

1
allow 13500 with no working shown for 2 marks
(d) straight line drawn from $13 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$
finishing on x-axis at 65 s
18. (a) moment $=280 \times 0.9$
moment $=252$
1
allow 252 with no working shown for 2 marks allow 25200 with no working shown for 1 mark
(b) the clockwise moment (of child B) decreases
making it is less than the anticlockwise moment (of child A)
accept so moments are no longer balanced
so child A moves downwards
or
so child B moves upwards

19. (a) Third Law

1
(b) elastic potential
(c) weight $=$ mass \times gravitational field strength accept gravity for gravitational field strength
accept $W=m g$
accept correct rearrangement ie mass $=$ weight / gravitational field strength or $m=W / g$
(d) $343=m \times 9.8$
$m=\underline{343}$
9.8
$\mathrm{m}=35$
allow 35 with no working shown for 3 marks
(e) force $=$ spring constant \times compression

$$
\begin{aligned}
& \text { accept force }=\text { spring constant } \times \text { extension } \\
& \text { accept } F=k e \\
& \text { accept correct rearrangement ie constant }=\text { force } / \text { extension or } k= \\
& F / e
\end{aligned}
$$

(f) compression $=0.07 \mathrm{~m}$
$343=k \times 0.07$
$k=343 \div 0.07$
$\mathrm{k}=4900$
allow 4900 with no working shown for 4 marks allow 49 with no working shown for 3 marks
20. (a) It will have a constant speed.
(b) distance travelled $=$ speed \times time
(c) $\mathrm{a}=\underline{18-9}$

6
$a=1.5$
allow 1.5 with no working shown for 2 marks
(d) resultant force $=$ mass \times acceleration
(e) $\mathrm{F}=(1120+80) \times 1.5$
$\mathrm{F}=1800(\mathrm{~N})$
allow 1800 with no working shown for 2 marks
accept their 10.3×1200 correctly calculated for 2 marks
(f) $18^{2}-9^{2}=2 \times 1.5 \times \mathrm{s}$
$\mathrm{s}=18^{2}-9^{2} / 2 \times 1.5$
$\mathrm{s}=81(\mathrm{~m})$
allow 81 (m) with no working shown for 3 marks
accept answer using their 10.3 (if not 1.5) correctly calculated for 3 marks
(g) Level 2 (3-4 marks):

A detailed and coherent explanation is provided. The response makes logical links between clearly identified, relevant points that include references to the numerical factor.

Level 1 (1-2 marks):

Simple statements are made. The response may fail to make logical links between the points raised.

0 marks:

No relevant content.

Indicative content

- doubling speed increase the kinetic energy
- kinetic energy increases by a factor of 4
- work done (by brakes) to stop the car increases
- work done increases by a factor of 4
- work done is force \times distance and braking force is constant
- so if work done increases by 4 then the braking distance must increase by 4

